Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 10 de 10
1.
Life Sci Alliance ; 6(12)2023 12.
Article En | MEDLINE | ID: mdl-37748811

Hundreds of mitochondrial proteins with N-terminal presequences are translocated across the outer and inner mitochondrial membranes via the TOM and TIM23 complexes, respectively. How translocation of proteins across two mitochondrial membranes is coordinated is largely unknown. Here, we show that the two domains of Tim50 in the intermembrane space, named core and PBD, both have essential roles in this process. Building upon the surprising observation that the two domains of Tim50 can complement each other in trans, we establish that the core domain contains the main presequence-binding site and serves as the main recruitment point to the TIM23 complex. On the other hand, the PBD plays, directly or indirectly, a critical role in cooperation of the TOM and TIM23 complexes and supports the receptor function of Tim50. Thus, the two domains of Tim50 both have essential but distinct roles and together coordinate translocation of proteins across two mitochondrial membranes.


Mitochondrial Membranes , Saccharomyces cerevisiae Proteins , Mitochondrial Membranes/metabolism , Mitochondrial Membrane Transport Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism , Mitochondria/metabolism , Mitochondrial Precursor Protein Import Complex Proteins
2.
Nature ; 615(7951): 222-224, 2023 03.
Article En | MEDLINE | ID: mdl-36854733
3.
Int J Mol Sci ; 22(19)2021 Sep 28.
Article En | MEDLINE | ID: mdl-34638772

Free fatty acids (FFAs) are generated by the reaction of lipases with membrane lipids. Generated polyunsaturated fatty acids (PUFAs) containing more than two double bonds have toxic effects in photosynthetic organisms. In the present study, we examined the effect of exogenous FFAs in the growth medium on the activity of photosystem II (PSII) under strong light in the cyanobacterium Synechocystis sp. PCC 6803 (Synechocystis). PUFAs but not monounsaturated fatty acids accelerated the rate of photodamage to PSII by inactivating electron transfer at the oxygen-evolving complex. Moreover, supplemented PUFAs were specifically incorporated into the sn-2 position of phosphatidylglycerol (PG), which usually contains C16 fatty acids at the sn-2 position in Synechocystis cells. The disruption of the gene for an acyl-ACP synthetase reduced the effect of PUFAs on the photoinhibition of PSII. Thus, the specific incorporation of PUFAs into PG molecules requires acyl-ACP synthetase and leads to an unstable PSII, thereby accelerating photodamage to PSII. Our results are a breakthrough into elucidating the molecular mechanism of the toxicity of PUFAs to photosynthetic organisms.


Fatty Acids, Unsaturated/metabolism , Phosphatidylglycerols/metabolism , Photosystem II Protein Complex/metabolism , Synechocystis/metabolism
4.
Plant J ; 105(1): 245-253, 2021 01.
Article En | MEDLINE | ID: mdl-33119921

Membrane lipid remodeling in plants and microalgae has a crucial role in their survival under nutrient-deficient conditions. Aquatic microalgae have low access to CO2 , an essential carbon source for photosynthetic assimilates; however, 70-90 mol% of their membrane lipids are sugar-derived lipids (glycolipids) such as monogalactosyldiacylglycerol (MGDG). In this study, we discovered a new system of membrane lipid remodeling responding to CO2 in Synechocystis sp. PCC 6803, a unicellular, freshwater cyanobacterium. As compared with higher CO2 (HC; 1% CO2 ), under ambient air (lower CO2 : LC), phosphatidylglycerol (PG) content was increased at the expense of MGDG content. To explore the biological significance of this alteration in content, we generated a transformant of Synechocystis sp. PCC 6803 overexpressing sll0545 gene encoding a putative phosphatidic acid phosphate (oxPAP), which produces diacylglycerol that is used for the synthesis of glycolipids, and examined the effect on membrane lipid remodeling and phototrophic growth responding to LC. Photosystem II (PSII) activity and growth rate were inhibited under LC in oxPAP cells. PG content was substantially reduced, and MGDG and sulfoquinovosyldiacylglycerol contents were increased in oxPAP cells as compared with control cells. These phenotypes in oxPAP cells were recovered under the HC condition or PG supplementation. Increased PG content may be required for proper functioning of PSII under LC conditions.


Carbon Dioxide/metabolism , Membrane Lipids/metabolism , Photosystem II Protein Complex/metabolism , Gene Expression Regulation, Bacterial , Synechocystis/metabolism
5.
Biochem Biophys Res Commun ; 534: 436-441, 2021 01 01.
Article En | MEDLINE | ID: mdl-33246557

The appropriate regulation of thylakoid lipid synthesis is essential for the function of chloroplasts. In plant cells, membrane lipids synthesized in the ER are utilized as a precursor for the synthesis of chloroplast glycolipids. This pathway is thought to be mediated by the transport of glycerolipids synthesized in the ER into chloroplasts. However, we have little knowledge about the proteins involved in the lipid transfer between these organelles in plant cells. Here we show a protein, STAR2, containing the START (Steroidogenic acute regulatory protein-related lipid transfer) domain known to function as a lipid transporter, is involved in the incorporation of ER-derived fatty acids into chloroplast glycolipids in Marchantia polymorpha. We found that STAR2 localizes on the chloroplast envelope membrane as a punctuate structure and is required for the increase of C20 fatty acids, which are synthesized in the ER, in chloroplast glycolipids in response to phosphate deprivation. Our results indicate that STAR2 of M. polymorpha is likely to be involved in the lipid transfer from ER to chloroplast, presumably as a lipid transporter.


Chloroplasts/metabolism , Fatty Acids/metabolism , Glycolipids/metabolism , Marchantia/metabolism , Plant Proteins/metabolism , Biosynthetic Pathways , Marchantia/growth & development , Marchantia/ultrastructure , Phosphates/metabolism , Plant Proteins/analysis
6.
Int J Mol Sci ; 21(20)2020 Oct 12.
Article En | MEDLINE | ID: mdl-33053769

Free fatty acids (FFA) generated in cyanobacterial cells can be utilized for the biodiesel that is required for our sustainable future. The combination of FFA and strong light induces severe photoinhibition of photosystem II (PSII), which suppresses the production of FFA in cyanobacterial cells. In the present study, we examined the effects of exogenously added FFA on the photoinhibition of PSII in Synechocystis sp. PCC 6803. The addition of lauric acid (12:0) to cells accelerated the photoinhibition of PSII by inhibiting the repair of PSII and the de novo synthesis of D1. α-Linolenic acid (18:3) affected both the repair of and photodamage to PSII. Surprisingly, palmitic (16:0) and stearic acids (18:0) enhanced the repair of PSII by accelerating the de novo synthesis of D1 with the mitigation of the photoinhibition of PSII. Our results show chemical potential of FFA in the regulation of PSII without genetic manipulation.


Palmitic Acid/metabolism , Photosynthesis , Photosystem II Protein Complex/metabolism , Stearic Acids/metabolism , Cyanobacteria/drug effects , Cyanobacteria/physiology , Cyanobacteria/radiation effects , Dose-Response Relationship, Drug , Dose-Response Relationship, Radiation , Light , Palmitic Acid/pharmacology , Photosynthesis/drug effects , Stearic Acids/pharmacology , Synechocystis/drug effects , Synechocystis/physiology , Synechocystis/radiation effects
7.
J Mol Evol ; 86(1): 68-76, 2018 01.
Article En | MEDLINE | ID: mdl-29330556

Phosphatidylcholine (PC) is one of the most common phospholipids in eukaryotes, although some green algae such as Chlamydomonas reinhardtii are known to lack PC. Recently, we detected PC in four species in the genus Chlamydomonas: C. applanata NIES-2202, C. asymmetrica NIES-2207, C. debaryana NIES-2212, and C. sphaeroides NIES-2242. To reveal the PC biosynthesis pathways in green algae and the evolutionary scenario involved in their diversity, we analyzed the PC biosynthesis genes in these four algae using draft genome sequences. Homology searches suggested that PC in these species is synthesized by phosphoethanolamine-N-methyltransferase (PEAMT) and/or phosphatidylethanolamine-N-methyltransferase (PEMT), both of which are absent in C. reinhardtii. Recombinant PEAMTs from these algae showed methyltransferase activity for phosphoethanolamine but not for monomethyl phosphoethanolamine in vitro, in contrast to land plant PEAMT, which catalyzes the three methylations from phosphoethanolamine to phosphocholine. This suggested an involvement of other methyltransferases in PC biosynthesis. Here, we characterized the putative phospholipid-N-methyltransferase (PLMT) genes of these species by genetic and phylogenetic analysis. Complementation assays using a PC biosynthesis-deficient yeast suggested that the PLMTs of these algae can synthesize PC from phosphatidylethanolamine. These results indicated that the PC biosynthesis pathways in green algae differ from those of land plants, although the enzymes involved are homologous. Phylogenetic analysis suggested that the PEAMTs and PLMTs in these algae were inherited from the common ancestor of green algae. The absence of PC biosynthesis in many Chlamydomonas species is likely a result of parallel losses of PEAMT and PLMT in this genus.


Chlamydomonas/genetics , Phosphatidylcholines/biosynthesis , Phosphatidylcholines/genetics , Amino Acid Sequence/genetics , Base Sequence/genetics , Biological Evolution , Chlamydomonas/metabolism , Chlorophyta/genetics , Chlorophyta/metabolism , Cloning, Molecular/methods , Ethanolamines/metabolism , Evolution, Molecular , Methyltransferases/genetics , Methyltransferases/metabolism , Phosphatidylethanolamine N-Methyltransferase/metabolism , Phosphatidylethanolamines/genetics , Phosphatidylethanolamines/metabolism , Phylogeny
8.
Biochem Biophys Res Commun ; 488(1): 141-146, 2017 06 17.
Article En | MEDLINE | ID: mdl-28483522

Phosphatidylcholine (PtdCho) is a common and abundant phospholipid in most eukaryotic organisms. Although it has been known that the model green alga Chlamydomonas reinhardtii lacks PtdCho, we recently detected PtdCho in four Chlamydomonas species. Homology search of draft genomic sequences of the four PtdCho-containing algae suggested existence of phosphoethanolamine-N-methyltransferase (PEAMT) in C. applanata and C. asymmetrica, which is the key enzyme in PtdCho biosynthesis in land plants. Here we analyzed the putative genes encoding PEAMT in C. applanata and C. asymmetrica, named CapPEAMT and CasPEAMT, respectively. In vitro assays with recombinant CapPEAMT and CasPEAMT indicated that they have the methylation activity for phosphoethanolamine, but not the methylation activity for phosphomonomethylethanolamine, in contrast with land plant PEAMTs, that possess the three successive methylation activities.


Chlorophyta/enzymology , Phosphatidylethanolamine N-Methyltransferase/chemistry , Phosphatidylethanolamine N-Methyltransferase/metabolism , Amino Acid Sequence , Chlorophyta/cytology , Chlorophyta/metabolism , Phosphatidylethanolamine N-Methyltransferase/genetics , Sequence Alignment
9.
Genome Announc ; 4(5)2016 Sep 29.
Article En | MEDLINE | ID: mdl-27688324

Phosphatidylcholine (PC) is one of the essential phospholipids for most eukaryotes. Although the model green alga Chlamydomonas reinhardtii lacks PC, four species containing PC were found in the genus Chlamydomonas Here, we report the draft genome sequences of the four species of Chlamydomonas containing PC.

10.
Plant J ; 87(3): 281-92, 2016 08.
Article En | MEDLINE | ID: mdl-27133435

Phosphatidylcholine (PC) is an almost ubiquitous phospholipid in eukaryotic algae and plants but is not found in a few species, for example Chlamydomonas reinhardtii. We recently found that some species of the genus Chlamydomonas possess PC. In the universal pathway, PC is synthesized de novo by methylation of phosphatidylethanolamine (PE) or transfer of phosphocholine from cytidine diphosphate (CDP)-choline to diacylglycerol. Phosphocholine, the direct precursor to CDP-choline, is synthesized either by methylation of phosphoethanolamine or phosphorylation of choline. Here we analyzed the mechanism of PC biosynthesis in two species of Chlamydomonas (asymmetrica and sphaeroides) as well as in a red alga, Cyanidioschyzon merolae. Comparative genomic analysis of enzymes involved in PC biosynthesis indicated that C. merolae possesses only the PE methylation pathway. Radioactive tracer experiments using [(32) P]phosphate showed delayed labeling of PC with respect to PE, which was consistent with the PE methylation pathway. In Chlamydomonas asymmetrica, labeling of PC was detected from the early time of incubation with [(32) P]phosphate, suggesting the operation of phosphoethanolamine methylation pathway. Genomic analysis indeed detected the genes for the phosphoethanolamine methylation pathway. In contrast, the labeling of PC in C. sphaeroides was slow, suggesting that the PE methylation pathway was at work. These results as well as biochemical and computational results uncover an unexpected diversity of the mechanisms for PC biosynthesis in algae. Based on these results, we will discuss plausible mechanisms for the scattered distribution of the ability to biosynthesize PC in the genus Chlamydomonas.


Chlamydomonas/metabolism , Phosphatidylcholines/biosynthesis , Chlamydomonas/genetics , Phosphatidylethanolamine N-Methyltransferase/genetics , Phosphatidylethanolamine N-Methyltransferase/metabolism
...